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Abstract
Purpose  There is limited research on the effects of maternal hyperandrogenism (MHA) on cardiometabolic risk factors 
in male offspring. We aimed to compare the risk of metabolic syndrome (MetS) in sons of women with preconceptional 
hyperandrogenism (HA) to those of non-HA women in later life.
Methods  Using data obtained from the Tehran Lipid and Glucose Cohort Study, with an average of 20 years follow-up, 1913 
sons were divided into two groups based on their MHA status, sons with MHA (n = 523) and sons without MHA (controls 
n = 1390). The study groups were monitored from the baseline until either the incidence of events, censoring, or the end of the 
study period, depending on which occurred first. Age-scaled unadjusted and adjusted Cox regression models were utilized to 
evaluate the hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between MHA and MetS in their sons.
Results  There was no significant association between MHA and HR of MetS in sons with MHA compared to controls, even 
after adjustment (unadjusted HR (95% CI) 0.94 (0.80–1.11), P = 0.5) and (adjusted HR (95% CI) 0.98 (0.81–1.18), P = 0.8). 
Sons with MHA showed a HR of 1.35 for developing high fasting blood sugar compared to controls (unadjusted HR (95% 
CI) 1.35 (1.01–1.81), P = 0.04), however, after adjustment this association did not remain significant (adjusted HR (95% 
CI) 1.25 (0.90–1.74), P = 0.1).
Conclusion  The results suggest that preconceptional MHA doesn’t increase the risk of developing MetS in sons in later life. 
According to this suggestion, preconceptional MHA may not have long-term metabolic consequences in male offspring.

Keywords  Fetal programming · Maternal hyperandrogenism · Metabolic syndrome (MetS) · Son · Tehran Lipid and 
Glucose Study (TLGS)

Introduction

One of the most significant causes of disability and mortal-
ity worldwide is cardiovascular diseases (CVDs), which are 
more prevalent in men than in women. Metabolic syndrome 
(MetS), a group of metabolic disorders, is considered a risk 
factor for CVDs. Patients with MetS have a higher risk of 

death, stroke, and heart attacks compared to those without 
MetS [1]. The diagnosis of MetS requires the presence of at 
least three out of the following criteria including hyperten-
sion, impaired fasting glucose (impaired glucose tolerance/
insulin resistance (IR)), central adiposity, decreased high-
density lipoprotein cholesterol (HDL-C), and elevated tri-
glycerides. The prevalence of MetS is increasing globally, 
even among children and young adults [1].

An adverse intrauterine environment may affect organ 
growth and development, potentially leading to diseases in 
later life. Evidence supports that some diseases, such as vas-
cular diseases, hypertension, MetS, and type 2 diabetes mel-
litus (T2DM), may be programmed during the early stages 
of fetal development [2].

Excess androgen exposure during fetal development has 
been suggested as a factor contributing to metabolic dis-
eases in later life. Evidence involving both animals and 
humans indicates that maternal androgen excess can result 
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in metabolic disorders, such as impaired insulin secretion, 
IR, glucose intolerance, T2DM, dyslipidemia, and hyperten-
sion in offspring in later life [3–6]. However, most studies on 
the cardiometabolic effects of maternal hyperandrogenism 
(MHA) (androgen excess) have primarily focused on female 
offspring, with limited research on male offspring [3, 5–8].

Aim

Therefore, in this long-term population-based follow-up 
study, we aimed to examine the risk of MetS in sons of 
women with preconceptional hyperandrogenism (HA) com-
pared to sons of women without HA in their later life.

Materials and methods

Study design

Tehran Lipid and Glucose Study (TLGS) is an ongoing 
prospective study with more than 2 decades of follow-up 
initiated in 1998 to explore the prevalence of non-com-
municable diseases risk factors among 15,005 males and 
females aged ≥ 3 years who were followed at 3-year intervals 
(seven phases including 6 follow-ups in addition to base-
line). Follow-up included a general physical examination, 

demographic, anthropometric, and metabolic assessments, 
as well as blood sampling. The TLGS details have been pub-
lished before [9]. For the present study, we used specific data 
collected in the context of reproductive aspects of TLGS the 
most detailed data was reported before [10].

Study population

From the total participants (mothers and sons) (n = 3512), 
all women who had defined HA status with at least one son 
were assessed to participate in the present study. We identi-
fied 1420 mothers with defined HA status and 2092 sons 
(Those who were not taking any medication that could affect 
their cardiometabolic parameters (blood sugar-lowering, 
blood lipid-lowering, and antihypertensive medications, as 
well as medications for weight loss/gain)). Sons who did not 
have at least one follow-up were excluded (n = 179). Finally, 
the total number of 1913 sons with at least one follow-up 
visit was divided into two groups including:

1.	 Sons of women with HA (sons with MHA) (n = 523)
2.	 Sons of women without HA (sons without MHA) (con-

trols) (n = 1390).

The study's flowchart is shown in Fig. 1. From baseline to 
the first event, censoring, or end of follow-up, we monitored 
all sons in both groups.

Sons with MHA 

n = 523

Sons without MHA (Controls) 

n = 1,390

Remained sons 

n = 1,913

Excluded males: 

Lost to follow-up; 

n = 179

Mothers with defined HA: 

n = 1,420

Sons, n = 2,092

Total participants (mothers 

and sons)

n = 3,512

Fig. 1   Flowchart of the study, HA hyperandrogenism, MHA maternal hyperandrogenism
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Measurements

A standard questionnaire was used during the face-to-face 
interview to collect all demographic data and family medical 
history. The educational level was categorized into 2 groups: 
those with formal education lasting less than 12 years, and 
those with greater than 12 years of education. During the inter-
views, a questionnaire was administered to assess reproductive 
variables, with a particular focus on the regularity of menstrual 
cycles, gynecological history, HA symptoms and family his-
tory of irregular menstrual cycles by trained midwives under 
the supervision of a gynecologist.

Data collection included the following clinical parameters 
body mass index (BMI), waist circumference (WC), systolic 
(SBP) and diastolic blood pressure (DBP), fasting blood sugar 
(FBS), HDL-C, triglyceride (TG), dehydroepiandrosterone 
sulfate (DHEAS), total testosterone (TT), androstenedione 
(A4) levels, and sex hormone-binding globulin (SHBG). All 
measurements were carried out by the standard protocol of 
the TLGS.

Using the modifiable activity questionnaire, participants 
were asked if they had physical activity in the past 12 months. 
Those who performed over 600 metabolic equivalent task 
minutes per week were classified into the moderate to high 
physical activity group. Subsequently, a blood sample was 
taken from each participant after an overnight fast. After cen-
trifuging blood samples, the sera were separated and stored 
at −80 °C for subsequent measurements. The measurement 
of FBS was carried out using the glucose oxidase method. 
HDL-C was measured after precipitation of the apolipoprotein 
B (APO B)-containing lipoproteins with phosphotungstic acid. 
Using glycerol phosphate oxidase, TG was measured. Both 
intra- and inter-assay coefficient variation (CVs) were below 
3% for FBS, HDL-C, and TG. Related kits were utilized for 
the analyses (Pars Azmon Inc., Tehran, Iran) and a selectra 
analyzer (Vital Scientific, Spankeren, Netherlands).

Maternal hormonal assessment includes Enzyme immu-
noassay (EIA) (Diagnostic Biochem Canada 1 Co. Ontario, 
Canada) was performed to measure DHEAS, TT, and A4 lev-
els. Immunoenzymometric assay (IEMA) was used to meas-
ure SHBG (Mercodia, Uppsala, Sweden). A Sunrise ELISA 
Reader (Tecan Co., Salzburg, Austria) was used to perform 
all enzyme-linked immunosorbent assays (ELISAs). The free 
androgen index (FAI) was estimated using the formula below 
TT (nmol/L) × 100/SHBG (nmol/L). Inter-and intra-assay 
coefficients of variations (CVs) for all hormones were found 
to be below 7%.

Definition of exposure and outcome terms

Exposure

Hirsutism, acne, or androgenic alopecia are the charac-
teristics that define clinical hyperandrogenism (CH) [6]. 
The modified Ferriman-Gallwey score was used to deter-
mine hirsutism (mF-G ≥ 8), and acne grading was deter-
mined based on its number, type, and distribution into 
four grades (mild, moderate, moderate to severe, severe) 
[6]. This study included women who had moderate/severe 
acne. Female hair loss was categorized into three severity 
levels, from mild to severe (I, П, Ш). In the present study, 
androgenic alopecia was defined by moderate to severe 
hair loss on the temples or diffuse thinning on the crown.

Biochemical hyperandrogenism (BH) was evaluated as 
an elevated serum levels of one or more androgens above 
the 95th percentile, including TT, A4, DHEAS, and free 
androgen index (FAI), determined in the selected healthy 
non-hirsute eumenorrheic women in the study population; 
specifically, the upper normal limits were 0.89 ng/mL, 2.9 
ng/mL, 179 µg/dL and 5.39 for TT, A4, DHEAS and FAI, 
respectively [11].

Women who had regular and spontaneous menstrual 
cycles without CH and/or BH were considered control 
mothers (women without HA). The sons of women who 
did not have HA were considered as a control group.

Outcomes

In children and adolescents, MetS was defined according 
to the definition proposed by Cook et al. as 3 or more of 
the following:

(1) WC ≥ 90th percentile for age and sex according to 
national reference curves, (2) SBP and DBP ≥ 90th per-
centile for sex, age, and height based on the National 
Heart, Lung, and Blood Institute’s recommended cut-off 
points, (3) FBS ≥ 100 mg/dL according to the recommen-
dations of the American Diabetes Association, (4) fasting 
TGs ≥ 110 mg/dL, (5) HDL-C < 40 mg/dL [12].

MetS in adults (age > 18 years) was defined by hav-
ing at least three of the criteria listed below. (1) elevated 
FBS (≥ 100 mg/dL or drug treatment), (2) elevated fasting 
TGs (≥ 150 mg/dL or drug treatment), (3) reduced fasting 
HDL-C (< 40 mg/dL or drug treatment), (4) elevated BP 
(≥ 130/85 mmHg or treatment with antihypertensive medi-
cations), (5) elevated WC (abdominal obesity) (≥ 89 cm) 
[12].

In this study, we also considered each component of 
MetS as an outcome variable.
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Statistical analysis

Our study had the power of 81% to detect a HR of 1.30 for 
the effects of MHA on MetS at a 0.05 significance level, 
after adjusting for an expected event rate of 25% for MetS.

The one-sample Kolmogorov–Smirnov test was used 
to check the normality of continuous variables; and were 
presented as mean (standard deviation) if they had a nor-
mal distribution or median with inter-quartile range (IQ25-
75) for variables with skewed distribution. Numbers and 
percentages were used to present categorical variables. 
Demographic and clinical characteristics of sons were 
compared according to their MHA status using the stu-
dent's t-test or �2 test for continuous or categorical data, 
respectively. The Mann–Whitney test was applied to com-
pare variables with skewed distribution.

The HRs and 95% confidence intervals (CIs) for the 
association of MHA with MetS and its components in 
sons were evaluated using the Cox regression model. The 
event date was considered as when the intended outcome 
occurred for the first time, and age at the event was com-
puted. We used an attained age scale where the primary 
time variable in the Cox model is defined by study son’s 
age at entry into the study (birth) and the age at which they 
experience an event or their follow-up is censored. The use 
of the attained age scale provides the most flexible control 
for age effects while avoiding the need to include an effect 
of age [13].

The multivariate Cox model included potential confound-
ing factors including BMI_SDS (body mass index_stand-
ard deviation score), physical activity, and education status. 
Both unadjusted and adjusted cumulative hazard functions 
were also plotted. Missing data for repeated measurement 
data was imputed using the multiple imputation method 
considering the time trend of the variable with the Amelia 
package in R [14].

Furthermore, an adjusted generalized estimating equa-
tions method (GEE) was applied to investigate longitudi-
nal trends of MetS components, including WC, HDL-C, 
TG, FBS, SBP, and DBP in study groups (sons with MHA 
and controls). It accounts for correlations within subjects 
through a working correlation matrix. It enables researchers 
to accurately estimate the effect size in case of incomplete 
data (missing variables in some repeated measures), which 
is common in cohort studies. The interaction between the 
MHA status and each phase of the study was checked; for 
this purpose, we entered the cross-product term (interaction 
term) in the model including both groups of study (sons 
with MHA and controls) and this analysis was performed 
on data of the first visit. An exchangeable working correla-
tion matrix that accounts for correlations within subjects 
was implemented. All individuals were required to have data 
on at least one of the seven visits. Predictors were: time 

(follow-up years), MHA status, and an interaction of these 
two (follow-up years × MHA status).

Statistical analysis was performed using the software 
package STATA (version 13; STATA Inc., College station, 
TX, USA) and R version 4.0.3 the significance level was set 
at P < 0.05.

Results

After identifying 1420 mothers with defined HA status, 1913 
eligible sons including 523 (27.3%) sons with MHA and 
1390 (72.7%) sons without MHA as controls were recruited. 
Table 1 shows the characteristics of mothers and their sons 
according to MHA status. The mean ± SD of age at first 
visit for sons with MHA and controls was 11.12 ± 6.42 
and 12.85 ± 7.50 years, respectively (P < 0.001). Sons with 
MHA and controls reached the mean age of 27.48 ± 8.58 and 
29.19 ± 9.42 years at last follow-up, respectively (P < 0.001). 
Moreover, the mean ± SD of BMI at first visit for sons with 
MHA and controls was 18.5 ± 4.8 kg/m2 and 19.3 ± 4.8 kg/
m2, respectively (P < 0.001). The percentage of moderate 
to high level physical activity at last follow-up for sons 
with MHA and controls was 52.9% and 46.2%, respectively 
(P = 0.01).

Figure 2 presents differences in the cumulative hazard 
curves for MetS according to the MHA status of sons.

Table 2 presents the results of Cox regression analysis 
regarding the association between the MHA and HR of MetS 
in their sons. There was no significant association between 
MHA and developing MetS in sons of these women com-
pared to controls (HR (95% CI) 0.94 (0.80–1.11)), (P = 0.5) 
the result remained not significant after adjusting for poten-
tial confounders, including BMI_SDS, physical activity, and 
education status (HR (95% CI) 0.98 (0.81–1.18)), (P = 0.8)). 
The results of Cox regression analysis regarding the associa-
tion between the maternal clinical hyperandrogenism (MCH) 
and HR of MetS in their sons are presented in Table 2. There 
was no significant association between MCH and develop-
ing MetS in sons of these women compared to controls (HR 
(95% CI), 1.01 (0.55– 1.87)), (P = 0.9); the result remained 
not significant after adjusting for potential confounders (HR 
(95% CI) 1.11 (0.56–2.23)), (P = 0.8)). Additionally, Table 2 
shows the results of Cox regression analysis regarding the 
association between the maternal biochemical hyperandro-
genism (MBH) and HR of MetS in their sons. There was no 
significant association between MBH and developing MetS 
in sons of these women compared to controls (HR (95% CI) 
1.02 (0.74–1.41)), (P = 0.8); the result remained not signifi-
cant after adjusting for potential confounders (HR (95% CI) 
0.91 (0.64–1.30)), (P = 0.6)).

Table 3 summarizes the results of Cox regression analy-
sis regarding the association between the MHA and HRs 



Journal of Endocrinological Investigation	

of the components of MetS (high WC, low HDL, high TG, 
high BP, and high FBS) in study groups. Sons with MHA 
showed a HR of 1.35 for developing high FBS compared to 
controls (HR 1.35, 95% CI 1.01–1.81, P = 0.04), however, 
this association did not remain significant after adjustment 
(HR 1.25, 95% CI 0.90–1.74, P = 0.1). Table 4 and Fig. 3 
a–f present the trends of the components of MetS during 
the study, according to the MHA status; the mean changes 
of MetS components were not significantly different between 
the sons with MHA and controls.

Discussion

In our population-based study with a long-term follow-up, 
we found that the risk of developing MetS did not increase in 
sons of women with HA (sons with MHA) compared to sons 
of women without HA in later life. This finding persisted 

even after accounting for CH and BH status, where no sig-
nificant association was detected.

An unfavorable intrauterine milieu during critical fetal 
development stages can affect the embryoʼs growth and 
differentiation, and predisposes the embryo to developing 
chronic non-communicable diseases, such as cardiovascu-
lar, metabolic, psychiatric, and other chronic diseases in 
later life [15–17]. As demonstrated by the evidence, the 
fetal endocrine, nutritional, and metabolic milieu have been 
found to influence cardiometabolic risk in adulthood [18, 
19]. Especially, prenatal exposure to sex steroid hormones 
affects disease susceptibility in later life. Recent attention 
has been focused on the role of the maternal androgen milieu 
because of the increase in environmental endocrine disrup-
tors, which may interact with the androgen receptor and its 
signaling [20].

Preclinical studies suggest that exposure to high levels 
of androgen during fetal development can increase the risk 
of cardiometabolic diseases in later life. Numerous animal 

Table 1   Characteristics of women (mothers) and their sons according to maternal hyperandrogenism (MHA) status

Values are presented as mean (SD), median (interquartile range) or number (percentage) as appropriate. P is calculated by independent-samples 
t-test or Mann–Whitney test for continuous, and �2 test for categorical data as appropriate for between group comparisons
HA hyperandrogenism, MHA maternal hyperandrogenism, T2DM type 2 diabetes mellitus, GDM gestational diabetes mellitus, Total T total tes-
tosterone, SHBG sex hormone binding globulin, FAI free androgen index, DHEAS dehydroepiandrosterone sulfate, A4 androstenedione, BMI 
body mass index
P value in bold signifies a statistically significant difference

Mother’s characteristics Women with preconcep-
tional HA
(n = 368)

Women without HA
(n = 1052)

P

Age at delivery (years) 23.8 (6.9) 22.2 (9.1) 0.003
Smoking history (past and current), n (%) 58 (15.8) 236 (22.4) 0.01
Parity 3.4 (2.5) 3.4 (1.0.19) 0.8
Mode of delivery (cesarean), n (%) 62 (16.8) 110 (10.5) 0.1
Education (diploma and upper), n (%) 287 (78) 782 (74.3) 0.2
T2DM, n (%) 130 (35.3) 372 (35.4) 0.9
GDM, n (%) 31 (8.4) 50 (4.7) 0.01
Total T (ng/mL) 0.4 (0.2, 0.75) 0.4 (0.2, 0.6) 0.01
SHBG (nmol/L) 46.6 (31.7, 64.0) 60.3 (46.0, 83.1) < 0.001
FAI 0.97 (0.45, 1.67) 0.60 (0.3, 1.04) < 0.001
DHEAS (µg/dL) 159 (89.2, 25.2) 122.8 (69.1,14.3) < 0.001
A4 (ng/mL) 1.7 (1.0, 2.4) 1.1 (0.9,1.7)  < 0.001

Son’s characteristics Sons with MHA
(n = 523)

Sons without MHA (Controls)
(n = 1390)

P

Age at first visit (years) 11.12 (6.42) 12.85 (7.50) < 0.001
Age at last follow up (years) 27.48 (8.58) 29.19 (9.42) < 0.001
BMI at first visit (kg/m2) 18.5 (4.8) 19.3 (4.8) < 0.001
BMI at last follow up (kg/m2) 25.9 (5.2) 26.4 (5.3) 0.06
Physical activity at first visit (moderate to high), n (%) 322 (64.5) 794 (59.8) 0.06
Physical activity at last follow up (moderate to high), n (%) 264 (52.9) 614 (46.2) 0.01
Education level at last follow up (diploma and upper), n (%) 258 (50.5) 679 (50.1) 0.8
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studies have indicated that prenatal androgen excess expo-
sure can lead to cardiometabolic changes, including IR, 
impaired glucose tolerance, T2DM, hypertension, adipos-
ity and obesity in later life [21–26]. However, the mecha-
nisms by which prenatal androgen exposure contributes to 
metabolic dysfunction and CVDs in humans remain unclear. 
Human studies on offspring prenatally exposed to androgens 
due to congenital adrenal hyperplasia or virilizing tumors, 
and also children born to women with polycystic ovary syn-
drome (PCOS) and HA report worse metabolic outcomes 

including central obesity, overweight, IR, increased serum 
fasting glucose and insulin levels, more prone to prediabe-
tes, T2DM and higher body weight and body mass index 
Z-scores in their later life [5, 27–32]. Notably, most research 
on the metabolic effects of the maternal androgen excess on 
metabolic disorders has focused on female offspring. One 
study conducted on male offspring reported that maternal 
androgen excess is not associated with increased risk for 
incident MetS in adult life [33], on contrary, Risal, et al. 
(2023) have indicated that maternal androgen excess can 

Fig. 2   Unadjusted (a) and 
adjusted (b) cumulative hazard 
plots for sons with maternal 
hyperandrogenism (MHA) (sons 
of women with hyperandrogen-
ism) and controls. Adjusted 
variables are body mass 
index_standard deviation score 
(BMI_SDS), physical activity, 
and education status
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lead to metabolic dysfunction through the male germline 
[34]. Additionally, Siemienowicz, et al. (2019) found that 
sons of PCOS patients might be at risk for intrahepatic chol-
estasis-like condition and impairment of metabolic health 
[35].

Contrary to the present study, we reported an elevated 
risk of MetS in daughters of women with HA, within the 
same cohort [6]. This finding is consistent with the results 
of a cohort study conducted by Huang and colleagues [33]. 
This research revealed that elevated maternal androgen lev-
els were associated with a greater likelihood of MetS in adult 
offspring, with a pronounced effect observed in female off-
spring but not for male [33]. These findings suggest that fetal 
programming alterations in adult cardiometabolic risk due to 
androgen exposure may be sex-dependent [33].

Cardiometabolic diseases such as MetS, T2DM, and 
hypertension are known to have sexual dimorphism in their 
development [36], which could be partially attributed to 
variations in hypothalamic neurocircuitry and the expression 
of androgen receptor (AR) in the hypothalamus. The hypo-
thalamus is a critical brain region that regulates both energy 
and glucose homeostasis and it is influenced by testosterone, 
leading to differences in reproductive behavior and physiol-
ogy between genders [37]. The differences in hypothalamic 
neurocircuitry suggest that androgen interacting with AR 
in the hypothalamic regions may exert different effects on 
metabolic functions in males and females.

There is substantial evidence supporting the alteration 
of cardiometabolic function in female offspring as a con-
sequence of exposure to androgen excess during prenatal 
development [3, 5–8, 33]. Animal studies indicated that 
exposure to androgen excess during critical periods of 
development through increased sympathetic activity fol-
lowing the central testosterone action leads to increased 
norepinephrine turnover in white adipose tissue and meta-
bolic dysfunction such as obesity and increased fat mass 
in adulthood in female animals [25, 38, 39]. Interestingly, 
human exposed to testosterone from their male co-twin's 
testes during prenatal life exhibit masculinized eating 
habits in later life [40]. It is well-established that males 
and females inherently exhibit distinct consumption pat-
terns. Consequently, the eating behavior of females and 
males diverges significantly. Males tend to will consume 
more calorie foods, reflecting their masculine traits, while 
females are more likely to exhibit characteristics associ-
ated with femininity [41]. On the other hand, exposure to 
excess testosterone during the perinatal period leads to a 
decrease in food intake in male offspring, what is observed 
in female littermates is not the same as this [25]. These 
observations are in line with our findings in terms of the 
lack of increase in the risk of MetS in sons of women with 
HA, despite perceiving a higher risk of MetS in daughters 
who were exposed to MHA during their prenatal life, in Ta

bl
e 

2  
A

ss
oc

ia
tio

n 
be

tw
ee

n 
M

H
A

, M
C

H
, M

B
H

 a
nd

 h
az

ar
d 

ra
tio

 o
f M

et
S 

in
 th

ei
r s

on
s

A
dj

us
te

d 
va

ria
bl

es
 a

re
 B

M
I_

SD
S,

 p
hy

si
ca

l a
ct

iv
ity

, a
nd

 e
du

ca
tio

n 
st

at
us

, C
ox

 re
gr

es
si

on
 m

od
el

 w
as

 a
pp

lie
d 

to
 a

ss
es

s t
he

 h
az

ar
d 

ra
tio

s a
nd

 9
5%

 c
on

fid
en

ce
 in

te
rv

al
s

M
H

A 
m

at
er

na
l h

yp
er

an
dr

og
en

is
m

, M
C

H
 m

at
er

na
l c

lin
ic

al
 h

yp
er

an
dr

og
en

is
m

, M
BH

 m
at

er
na

l b
io

ch
em

ic
al

 h
yp

er
an

dr
og

en
is

m
, M

et
S 

m
et

ab
ol

ic
 s

yn
dr

om
e,

 H
R 

ha
za

rd
 R

at
io

, C
I c

on
fid

en
ce

 in
te

r-
va

l, 
BM

I_
SD

S 
bo

dy
 m

as
s i

nd
ex

_s
ta

nd
ar

d 
de

vi
at

io
n 

sc
or

e,
 C

on
tro

ls
 so

ns
 w

ith
ou

t M
H

A
, w

ith
ou

t M
C

H
 a

nd
 w

ith
ou

t M
B

H

Va
ria

bl
es

M
H

A
(r

ef
.c

on
tro

ls
)

M
C

H
(r

ef
.c

on
tro

ls
)

M
B

H
 (r

ef
 c

on
tro

ls
)

U
na

dj
us

te
d 

m
od

el
A

dj
us

te
d 

m
od

el
U

na
dj

us
te

d 
m

od
el

A
dj

us
te

d 
m

od
el

U
na

dj
us

ta
bl

e 
m

od
el

A
dj

us
te

d 
m

od
el

H
R

(9
5%

 C
I)

P
H

R
(9

5%
 C

I)
P

H
R

(9
5%

 C
I)

P
H

R
(9

5%
 C

I)
P

H
R

(9
5%

 C
I)

P
H

R
(9

5%
 C

I)
P

0.
94

(0
.8

0–
1.

11
)

0.
5

0.
98

(0
.8

1–
1.

18
)

0.
8

1.
01

(0
.5

5–
1.

87
)

0.
9

1.
11

(0
.5

6–
2.

23
)

0.
8

1.
02

(0
.7

4,
 1

.4
1)

0.
8

0.
91

(0
.6

4,
 1

.3
0)

0.
6

B
M

I_
SD

S
–

–
1.

37
 (1

.2
7–

1.
47

)
 <

 0.
00

1
–

–
1.

12
 (0

.7
9–

1.
58

)
0.

5
–

– 
1.

28
(1

.1
1–

1.
48

)
<

 0
.0

01
Ph

ys
ic

al
 a

ct
iv

-
ity

 (m
od

er
-

at
e 

to
 h

ig
h)

–
–

0.
91

 (0
.7

8–
1.

07
)

0.
2

–
–

1.
04

 (0
.6

0–
1.

79
)

0.
8

–
–

1.
03

(0
.7

4–
1.

44
)

0.
8

Ed
uc

at
io

n 
(d

ip
lo

m
a 

an
d 

up
pe

r)

–
–

0.
81

 (0
.7

4–
0.

88
)

 <
 0.

00
1

–
–

0.
83

 (0
.6

2–
1.

12
)

0.
2

–
–

0.
85

(0
.7

0–
1.

02
)

0.
09



	 Journal of Endocrinological Investigation

Table 3   Association between MHA and hazard ratio of MetS’ components in their sons

Adjusted variables are BMI_SDS, physical activity and education status. Reference group for MHA is controls (sons without MHA), Cox regres-
sion model was applied to assess the hazard ratios and 95% confidence intervals
MHA maternal hyperandrogenism, MetS metabolic syndrome, HR hazard ratio, CI confidence interval, WC waist circumference, HDL-C high-
density lipoprotein-cholesterol, TG triglyceride, BP blood pressure, FBS fasting blood sugar, BMI_SDS body mass index_standard deviation 
score

Response variable Variables Unadjusted HR (95% CI) P Adjusted HR (95% CI) P

High WC MHA (ref: control) 1.01 (0.88–1.16) 0.8 1.08 (0.92–1.27) 0.3
BMI_SDS – – 1.37 (1.28–1.47)  < 0.001
Physical activity (moderate to high) – – 0.92 (0.80–1.06) 0.2
Education (diploma and upper) – – 0.77 (0.71–0.83)  < 0.001

Low HDL-C MHA (ref: control) 0.80 (0.64–1.00) 0.05 0.83 (0.62–1.11) 0.2
BMI_SDS – – 1.23 (1.1–1.39)  < 0.001
Physical activity (moderate to high) – – 1.16 (0.9–1.49) 0.2
Education (diploma and upper) – – 0.85 (0.74–0.99) 0.03

High TG MHA (ref: control) 0.87 (0.73–1.04) 0.1 0.97 (0.79–1.18) 0.7
BMI_SDS – – 1.12 (1.02–1.22) 0.01
Physical activity (moderate to high) – – 0.97 (0.82–1.15) 0.7
Education (diploma and upper) – – 0.82 (0.75–0.91)  < 0.001

High BP MHA (ref: control) 0.82 (0.65–1.03) 0.1 0.89 (0.69–1.14) 0.3
BMI_SDS – – 1.17 (1.05–1.30) 0.003
Physical activity (moderate to high) – – 0.98 (0.80–1.21) 0.9
Education (diploma and upper) – – 0.75 (0.67–0.84)  < 0.001

High FBS MHA (ref: control) 1.35 (1.01–1.81) 0.04 1.25 (0.90–1.74) 0.1
BMI_SDS – – 0.86 (0.73–1) 0.06
Physical activity (moderate to high) – – 0.91 (0.69–1.2) 0.5
Education (diploma and upper) – – 0.80 (0.69–0.93) 0.003

Table 4   Estimation of the 
generalized estimating equation 
(GEE) model in sons with MHA 
vs. controls after adjusting for 
confounding variables

Adjusted variables are BMI_SDS (body mass index_standard deviation score), physical activity, and edu-
cation status. Reference group for MHA is controls (sons without MHA)
MHA maternal hyperandrogenism, CI confidence interval, WC waist circumference, HDL-C high-density 
lipoprotein-cholesterol, TG triglyceride, SBP systolic blood pressure, DBP diastolic blood pressure, FBS 
fasting blood sugar

Variable Coefficient* 95% CI P

WC (cm) MHA group  − 0.85  − 2.35,0.65 0.2
Time (years) 3.24 3.10,3.39  < 0.001
MHA group *Time 0.03  − 0.22,0.29 0.7

HDL-C (mmol/L) MHA group 0.05 0.01,0.08  < 0.01
Time (years) 0.01 0.01,0.01  < 0.001
MHA group *Time  − 0.004 −0.01,0.002 0.2

TG (mmol/L) MHA group  − 0.16 −0.31,−0.01 0.03
Time (years) 0.09 0.08,0.10  < 0.001
MHA group *Time 0.01 −0.01,0.03 0.3

SBP (mmHg) MHA group 0.10 −1.73,1.95 0.9
Time (years) 0.95 0.77,1.13  < 0.001
MHA group *Time  − 0.17 −0.5,0.14 0.2

DBP (mmHg) MHA group 0.19 −1.23,1.62 0.7
Time (years) 1.57 1.43,1.71  < 0.001
MHA group *Time −0.11 −0.37,0.14 0.3

FBS (mmol/L) MHA group 0.05 −0.007,0.12 0.08
Time (years) 0.04 0.03,0.04  < 0.001
MHA group *Time −0.005 −0.01,0.005 0.3
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the same population [6]. This inconsistency may also be 
partly explained by the different effects of androgen on 
metabolic disorders in men and women; although higher 
androgen levels increase the risk of MetS in women, 
lower levels are associated with a higher risk in men [42]. 

Moreover, men with testosterone deficiency are at a higher 
risk of IR, obesity, MetS, T2DM, and CVDs, as evidenced 
by studies [43–47]. It seems that androgen deficiency in 
men can be associated with obesity due to the loss of tes-
tosterone action in neurons of the central nervous system, 

P interaction=0.7
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Fig. 3   a–f Generalized estimating equation (GEE) measures. Mean 
of changes within follow-ups between sons with maternal hyper-
androgenism (MHA) (sons of women with hyperandrogenism) and 

controls assuming the interaction between time and study group and 
also adjusting for confounding variables (body mass index_standard 
deviation score (BMI_SDS), physical activity, and education status)
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which decreases energy expenditure, and increases lep-
tin resistance. Conversely, women with androgen excess 
are more prone to IR, adiposity, and T2DM [43, 46, 48]. 
Notably, the association between testosterone levels and 
cardiometabolic consequences varies by gender, and these 
gender-specific effects may be partly explained by distinct 
roles of testosterone in modulating glucose and energy 
homeostasis [43]. In males, the loss of central AR action 
decreases energy expenditure and predisposes them to 
adiposity and IR. In contrast, females experience adverse 
effects on metabolic homeostasis due to androgen excess 
during the perinatal period or adulthood.

Furthermore, the metabolism of female rodents, nonhu-
man primates, and even humans can be influenced by tran-
sient perinatal androgen excess, potentially altering their 
genetic predisposition to obesity and MetS in adulthood 
[25–28, 39, 49, 50].

In addition to the different effects of androgens on the 
metabolic homeostasis in men and women, sex differences 
in physiology of men and women may arise from differences 
in sex chromosomes. Genes expressed on the X chromosome 
can significantly impact metabolic parameters. These genes 
contribute to various aspects, including body weight and 
adiposity [51–53]. Notably, excess abdominal adiposity and 
an elevated risk of T2DM have been observed in men with 
Klinefelter syndrome, who possess two X chromosomes, 
therefore metabolic dysfunction is promoted by an addi-
tional X chromosome [54, 55]. Moreover, increased fast-
ing insulin levels, IR, elevated liver triglycerides, enhanced 
expression of fatty acid oxidation enzymes, and increased 
fat mass are observed in XX animals with 2 X chromo-
somes when exposed to a high-fat diet [51]. Collectively, 
these findings suggest that the X chromosome may indeed 
impair metabolic function. Additionally, some genes on the 
X chromosome escape inactivation and maintain expres-
sion levels in tissues such as adipose and liver [56]. These 
genes could contribute to phenotypic differences between 
males and females, impacting metabolic outcomes. Recent 
research, utilizing the four core genotypes mouse model, 
highlights the independent role of sex chromosome com-
plement (regardless of gonadal sex) [56]. This complement 
influences various aspects, including adiposity, feeding 
behavior, fatty liver, and glucose homeostasis. Potential 
mechanisms for the effects of sex chromosome complement 
include differential gene dosage from X chromosome genes 
that escape inactivation and distinct genomic imprints on X 
chromosomes inherited from maternal or paternal parents 
[56]. In summary, understanding the interplay between sex 
chromosomes and metabolic function is a fascinating area 
of research. While existing studies primarily correlate meta-
bolic parameters with hormonal milieu, further investiga-
tions specifically addressing the correlation between the X 
chromosome and metabolic traits are still required.

The variation in metabolic parameters between males 
and females may be caused by dosage of androgen exposure 
during prenatal life. Previous research has indicated that 
testosterone exposure during fetal life can lead to a dose-
dependent reduction in the birth weight among fetuses [57].

Strengths and limitations

This is a long-term prospective population-based study 
involving a cohort of sons with MHA and controls, pos-
sibly demonstrating more accurate results and facilitating 
the assessment of the incidence of Mets over time. Using 
a standardized and exact definition for HA, the presence of 
the control group that is not HA and adjustment for some 
potential confounders that may affect each outcome were 
strengths of the present study that helped us achieve valu-
able results. Additionally, the studyʼs population-based 
framework enables us to evaluate the impact of MHA on 
subsequent cardiometabolic disorders in male offspring. The 
population-based approach enhances the generalizability of 
our findings beyond the study cohort.

There are some limitations in our study. First, we did not 
directly measure androgen levels in pregnant women during 
gestational period, therefore, the assessing the dose-depend-
ent effects of androgen exposure during prenatal life remains 
challenging. The most common cause of HA in reproduc-
tive-aged women is PCOS [58]. While the status of HA is 
believed to originate during fetal life and persists throughout 
the lifespan of affected women, we did not re-evaluate its 
status during pregnancy [59, 60]. Moreover, the concept of 
maternal PCOS has often been served as a paradigm for 
exploring the impact of prenatal androgen exposure on the 
disease pathogenesis in offspring [61], notwithstanding the 
absence of subsequent reassessment of androgen excess 
during the gestational period. Recent findings indicate that 
women with HA linked to PCOS exhibit elevated concen-
trations of androgens in umbilical cord blood compared to 
non-PCOS counterparts, leading to increased fetal exposure 
to maternal-origin androgens [62–64]. Studies have revealed 
structural and molecular abnormalities in the placentae of 
mothers with PCOS [65, 66], resulting in compromised pla-
cental aromatase activity that fails to shield the fetus from 
the adverse effects of androgen excess. Moreover, research 
indicates that maternal androgens play a role in regulating 
placental and fetal steroidogenesis, influencing in utero 
androgen levels [67, 68]. Furthermore, a recent study has 
highlighted alterations in key enzymes involved in steroid 
synthesis (3β-HSD-1 and P450) among pregnant women 
with PCOS, potentially contributing to heightened andro-
gen production during pregnancy [66]. Notably, placental 
tissue emerges as a potential source of androgen production 
in women with PCOS. While direct assessment of maternal 
hyperandrogenic status during pregnancy was not conducted, 
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it is plausible that male offspring of hyperandrogenic moth-
ers were exposed to elevated androgens during their prenatal 
development. Second, our study lacked adjustment for life-
style modifications, including dietary habits. Third, we did 
not assess specific medications used by mothers during the 
preconception period, as well as the birth weight, and the 
androgen levels in these male offspring during their adult-
hood. Future studies may benefit from incorporating such 
measurements to enhance the comprehensiveness and accu-
racy of the results. Forth, our analysis focused solely on an 
urban population, limiting the generalizability of results to 
rural populations. All participants were limited to the Asian 
subjects, further studies should be performed among other 
ethnicities. Finally, it should be kept in mind that, in this 
study, the lack of statistical significance may be attributed 
to sample size limitations, the absence of some covariates 
related to metabolic disorders (such as small for gestational 
age neonates), and the definition of exposure.

Conclusion

Over two decades of follow-up, our study reveals that 
preconceptional MHA does not significantly increase the 
risk of MetS development in male offspring in their later 
life. However, to validate these findings and unravel the 
intricate mechanisms underlying sex-specific developmen-
tal programming of MetS influenced by androgens, fur-
ther comprehensive, population-based studies are essen-
tial. These investigations should encompass all relevant 
parameters, enhancing our understanding of this complex 
interplay.
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